
Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

 CVS - Concurrent Versions System
Crash-Course

• Who should care?
• What is a code revision system?
• Procedural operation.
• What if there are editing conflicts?
• Basic CVS commands.
• Useful aliases for remote operation.
• Advanced topics.

Gerhard Klimeck, Michael McLennan
Purdue University

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

Who Should Care?
• Do you develop software in any language?

– E.g. Matlab, C, Fortran, Python etc. - you are not just a user of
e.g. MS Word or Gaussian?

– Is your software rapidly evolving?
– Do you keep “versions” of your code in different directories or on

different machines?
– Do you have trouble keeping track of the bugs you fixed for one

project, but now you need it in another?
• Do you or should you be using multiple computer

systems to get your work done?
• Do you or should you be developing software together

with other people?

• If your answer is yes to any of these questions:
Learn about CVS!

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

Have you worked on multiple computers
with the “same” code?

Project 1
Expl: Abinit, MOCA,

NESSIE, NEMO

Intel P4
32 bit

gcc intel

IBM AIX
64 bit

gcc

NSF Teragrid

Intel P4
32 bit

intel

IBM AIX
64 bit

Intel Itanium
64 bit

gcc intel

Could end up with 8 different versions of the
“same”code, with “slight” modifications!!!!!

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

In a Single Repository!

Has your PhD lead to several versions of related pieces of code?
Did you go through several iterations?

Your Ph.D. Thesis!

Nano Wires

H1 Poisson

Where do you keep all these versions of code?
What if someone asked you to give them your code?

H2

Quantum Dots

H2 Poisson

H3 Poisson2

H3

Poisson2

You probably now have a large number of directories
with combinations of codes

Your Software

wire.m

H1.m
H2.m

pois.m

H3.m
pois2.m

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS runs on top of
RCS-Revision Control Systems

• Use a central library system.
• Library contains files pertinent to a project.
• Library resides on a server that can be

connected to by remote machines.
• File revisions automatically numbered
• By default users see the latest version of a file.
• Can retrieve any older version as well.
• Can request information about the changes

from one version to the next.

Library of all files
and all revisions

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

Project1
 file1.c
file2.m
file3.py

• Good Programming practice helps (but is not essential):
• Break up the source code into modular files - modules are

useful for many projects and people.
• E.g: Computation of Hamiltonian matrix elements, vs.

arrangements of matrix elements into geometry dependent
matrix, vs. solution of the eigenvalues, vs. graphing, vs.
data storage.

• Eliminate duplication of code that needs to be maintained
independently.

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS
What are the basic commands?

• mmc’s changes are not lost

Library of all files
and all revisions Emacs

facilitates
the

check-
out &

check-in

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

 file.c r1.3

Δ r1.2
Δ r1.1

Users lake, bowen, etc.:
look at the latest public
revision of file.c (r1.3)
co = check-out

co file.c

User gekco:
edits file.c r1.3
he creates the new r1.4

co file.c

commit file.c

file.c r1.4
commit = send to libr.

Users lake, bowen, etc.:
update to the latest public
revision of file.c (r1.4)
co = check-out = update

cvs update
or

co file.c

Users mmc made
changes to r1.3 but did
not commit yet!

 cvs commit creates r1.5

cvs commit

 file.c r1.5
file.c r1.4

 file.c r1.3
Δ r1.2
Δ r1.1

• “cvs commit” commits the
local changes into the
library

• “cvs update” performs
update against latest copy
and merges local changes

cvs update
or

co file.c

cvs update performs:
(r1.3+Δmmc) merge Δr1.4

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS
How are conflicts being handled?

• What if gekco and mmc
changed the same lines?

• gekco committed first!

Library of all files
and all revisions Emacs

facilitates
the

check-
out &

check-in

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

 file.c r1.3

Δ r1.2
Δ r1.1

User gekco:
edits file.c r1.3
he creates the new r1.4

co file.c

commit file.c

file.c r1.4
commit = send to libr.

Users mmc made
changes to r1.3 but did
not commit yet!

• mmc must resolve the
conflict!

blanks resolves conflict

cvs update
or

co file.c

cvs update performs:
(r1.3+Δmmc) diff. Δr1.4

• “cvs update” flags conflicts
to mmc with explicit
symbols in the code!

cvs commit

 file.c r1.5
file.c r1.4

 file.c r1.3
Δ r1.2
Δ r1.1

• “cvs commit” sends
changes to libr. r1.5cvs commit creates r1.5

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS - The Bottom Line

• CVS operates:
• across remote platforms
• Different platforms, Linux, IRIX, SunOS, AIX, Cygwin, Windows

• Emacs and other editors can help with the check-out and check-in!

Library of all files
and all revisions Emacs

facilitates
the

check-
out &

check-in

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

file.c r1.4
 file.c r1.3

Δ r1.2
Δ r1.1

 file.c r1.3

Δ r1.2
Δ r1.1

Users lake, bowen, etc.:
look at the latest public
revision of file.c (r1.3)
co = check-out

co file.c

User gekco:
edits file.c r1.3
he creates the new r1.4

co file.c

commit file.c

file.c r1.4
commit = send to libr.

FORGET about PRIVATE/LOCAL CODE VERSIONS!!!

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS - basic user commands

Assumption:CVS repository exists, a new member joins team
• “cvs co project” - retrieves a local copy of project in directory “project”

- specification “where” the repository is on the next slide
All following commands work inside “dir_name” without reference to repository!
• “cvs update” - update the local copy against the latest copy in the library.

 Flag possible conflicts!
• “cvs commit <filename>” - commit local changes to the library.

 Implicitly performs “cvs update”. If there is a conflict,
 “cvs commit” will fail and and demand conflict resolution.
 If a “filename” is given only that particular file will be
 committed.
 An editor window will pop up where the user should
 document the theme of the changes to the files.

• “cvs add filename” - add file called “filename” to the repository in the same
 relative directory tree. “filename” can be a directory name

• “cvs delete filename” - remove a file from the repository
 (it actually gets moved into an ATTIC directory).

• “cvs log <filename>“ - prints the log of all the files in the directory tree
 or the log of “filename”.

• “cvs diff <filename>“ - prints out the differences to the local files or
 “filename” against the library files.

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS - remote operation
Useful Environmental Variables

• Previous slide omitted the specification as to where to find the (remote) repository.
Assume

• “/some/pathname/repo” is the repository
• “/some/pathname/repo/project1” is the particular project in the repository
• “machine.domain” the machine where the repository resides.
• “loginname” is the user’s login on “machine.domain”

• There are several ways to specify the location of the repository.
1) direct specification in the command line option:

cvs -d /some/pathname/repo co project1
 will work on the local machine “machine.domain”
cvs -d :ext:loginname@machine.domain:/some/pathname/repo co project1

will work on a remote machine if “loginname” has password on
“machine.domain”

2) By specification of an environmental variable:
cvs co project1

will work if “setenv CVSROOT "/some/pathname/repo”
or if “setenv CVSROOT ":ext:login@machine.domain:/some/pathname/repo”
are set for local or remote access.

• Remote access typically requires the setting of a secure communication channnel:
setenv CVS_RSH "ssh"

Morgan State University - Northwestern University - Purdue University - Stanford University - University of Florida - University of Illinois - University of Texas at El Paso
NCN

CVS - advanced topics
• Adding a binary file to the repository:

• cvs add -kb filename
• Creation of a CVS repository

• cvs init
• The location needs to be specified directly or through environmental

variables as describes on the previous page.
• Import of a directory tree named “project2” into a repository

• cd project2
• cvs import -m ”some message" project2 VendorTag ReleaseTag

“some message” gets written into the log file of each file that is in
project2, VentorTag is a single character string used to identify the
origin of the code and ReleaseTag specifies the Vendor’s release
number

• cvs import -m ”project2 import” project2 FromJoe 1
should work fine for example

• More information on
http://www.gnu.org/software/cvs/manual/html_mono/cvs.html

